当前位置: 首页 > NG体育官方网站 > 激光粒度仪

激光粒度仪原理讲解

发布时间:2024-03-12 来源:激光粒度仪

  Malvern的早期仪器在小颗粒量程段采用这种结构,法国的Cilas则全量程采用这种结构。济南微纳的产品也采用这种结构。该结构的优点是最大接收角不受傅立叶镜头口径限制,但是它只在较小散射角(5º)上能实现精确聚焦。随着散射角增大,聚焦误差会慢慢的大。聚焦有误差意味着探测器上的一个确定位置并不对应一个确定的散射角,从而使仪器的分辨率降低。

  本文所引用的光路图大多来自各仪器制造商公开散发的产品宣传资料。由于这类资料都不是正式的出版物,不便在文章后的“参考文献”中索引,还请被引用单位(或个人)、审稿人和读者谅解。审稿人和读者如需查阅被引用资料的详情信息,可以向相应的仪器制造商索取。

  激光粒度仪是利用颗粒对光的散射(衍射)现象测量颗粒大小的,即光在行进过程中遇到颗粒(障碍物)时,会有一部分偏离原来的传播方向;颗粒尺寸越小,偏离量越大;颗粒尺寸越大,偏离量越小(见图1)。散射现象可用严格的电磁波理论,即Mie散射理论描述。当颗粒尺寸较大(至少大于2倍波长),并且只考虑小角散射(散射角小于5°)时,散射光场也可用较简单的Fraunhoff衍射理

  激光粒度仪经典的光路如图2所示。它由发射、接受和测量窗口等三部分所组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散

  激光器发出的激光束经聚焦、低通滤波和准直后,变成直径为8~25mm的平行光。平行光束照到测量窗口内的颗粒后,发生散射。散射光经过傅立叶透镜后,同样散射角的光被聚焦到探测器的同一半径上。一个探测单元输出的光电信号就代表一个角度范围(大小由探测器的内、外半径之差及透镜的焦距决定)内的散射光能量,各单元输出的信号就组成了散射光能的分布。尽管散射光的强度分布

  比较图2和图5能够准确的看出,所谓的改进是增加了辅助探头。这些探头用以弥补环形探测器阵列最大外径的不足,从而扩大仪器对散射光的接受角,扩展仪器的测量下限。在这种结构下扩大接受角,将受到傅立叶透镜光瞳的制约。

  有其他的名称。英国Malvern称之为“逆傅立叶变换(Inversely Fourier Transform)”,其英文名称在光学界是约定俗称的,未见有人提出异议,大概是因为在通常的光学傅立叶变换装置中,物体在透镜之前,而这种结构中物体在透镜之后,在此“Inversely”应作“位置相反”理解。中文直译为“逆傅立叶变换”则容易被误解,因为“逆变换”是一个专用名词,意为“对正变换的还原”,而这里显然不是这个意思。国内有学者主张叫“会聚光傅立叶变换”,其物理意义贴切,但与英文名称的意思相距甚远。作者建议叫“透镜后傅立叶变换”,“透镜后”算是对“Inversely”这一单词的意译。

  总是中心大,边缘小(见图1),但是由于探测单元的面积总是里面小外面大,所以测得的光能分布的峰值一般是在中心和边缘之间的某个单元上,见图4。当颗粒直径变小时,散射光的分布范围变大,光能分布的峰值也随之外移。所以不同大小的颗粒对应于不同的光能分布,反之由测得的光能分布就可推算样品的粒度分布。

  测量下限是激光粒度仪重要的技术指标。激光粒度仪光学结构的改进大多数都是为了扩展其测量下限或是小颗粒段的分辨率。基本思路是增大散射光的测量范围、测量精度或者减少照明光的波长。

  本文收集了国内外各种商品化激光粒度分析仪的典型光学结构,分析了它们的工作原理和性能特点。其技术特征可概括为:经典傅立叶变换结构、透镜后傅立叶变换结构、双镜头结构、多光束结构、多波长结构、PIDS技术、球面接收技术、双向偏振光补偿技术和梯形窗口技术。现有的各种激光粒度仪或采用上述技术中的一种,或者是两种甚至三种的组合。

  图2是激光粒度仪光路的经典结构。它简单明了,早期的激光粒度仪几乎全部采用这种结构,至今仍有几家制造商在采用。德国Sympatec就是这里面之一。为了扩大仪器的测量范围,他们采用了8组不同焦距的傅立叶镜头。由于探测器的半径不变,因此焦距越小,对应的散射角越大,即能测量的粒径越小。不同焦距的透镜对应于不同的测量范围。该公司产品可以依据样品的粒度分布范围自动更换镜头。丹东百特和成都精新也用这种结构,但作了一些改进,如图5所示。

  接收器由傅立叶透镜(见图2)和光电探测器阵列(见图3)组成。所谓傅立叶透镜就是针对物方在无限远,像方在后焦面的情况消除像差的透镜。激光粒度仪的光学结构是一个光学傅立叶变换系统,即系统的观察面为系统的后焦面。由于焦平面上的光强分布等于物体(不论其放置在透镜前的什么位置)的光振幅分布函数的数学傅立叶变换的模的平方,即物体光振幅分布的频谱。激光粒度仪将探测器放在透镜的后焦面上,因此相同传播方向的平行光将聚焦在探测器的同一点上。探测器(见图3)由多个中心在光轴上的同心圆环组成,每一环是一个独立的探测单元。这样的探测器又称为环形光电探测器阵列,简称光电探测器阵列。

  激光粒度仪从问世到现在已经有近40年的历史。相对于传统的粒度测量仪器(如沉降仪、筛分、显微镜等),它具有测量速度快、重复性好、动态范围大、操作便捷等优点,现在已变成全球上最流行的粒度测量仪器。目前全世界约有15家公司制作激光粒度仪,国外有近10家,国内有一定规模的约5家。激光粒度仪本质上是一种光学仪器,其光学结构对仪器性能具有决定性影响。在近40年里,出现了多种光学结构。其演变的主要方向是扩展仪器的测量下限。本文拟对世界上出现过的各种激光粒度仪的光学结构作一梳理和分析,希望对仪器的使用者更好地识别仪器性能,对仪器的研发人员研制性能更优秀的仪器都能有所裨益。